Joseph T. Rodgers

PIBBS Mentor

Assistant Professor
Stem Cell Biology and Regenerative Medicine
Broad CIRM Center, Keck School of Medicine

Research Topics

  • Stem cell physiology
  • Tissue growth, repair, and regeneration
  • Aging
  • Cellular metabolism
  • Cell signaling
  • Single cell analysis

Research Overview

How does an organism grow? How do cells, tissues, and organs in the body know where, when, and what to grow? How do they know when to stop? Resident in many adult tissues are stem cells that are the driving force behind the body’s ability to grow, repair injuries, and maintain homeostasis. In order for stem cells to orchestrate these processes their function must be coordinated in time, space, and scale.

Our research is focused on understanding the pathways that link the physiologic requirements of an organism with the response by stem cells to fulfill those needs. We combine mouse models of tissue growth, repair/regeneration, and homeostasis, with stem cell specific genetic tools and single cell analyses to dissect the signals that regulate stem cells, the cellular/behavioral response to those signals, and the molecular pathways involved. The goal of our research is to translate the biologic mechanisms that regulate stem cells into therapies to control stem cells. The direct applications of this research are in improving regenerative medicine, tissue transplantation, and tissue engineering.

Work in the laboratory is largely rooted in the study of stem cell quiescence. Quiescence is a state in which a stem cell is not committed to cell division but maintains the capacity to divide. The role of quiescence is to preserve stem cells until they are called upon to participate in tissue growth or repair. Work from our group has found that there are at least two distinct sub-phases within the stem cell quiescent state and that stem cells dynamically transition between these phases in response to physiologic cues. Stem cells can enter an ‘alert’ phase of quiescence in which they are extremely responsive to environmental stimuli or a phase of deep quiescence where they are resistant. This regulation of quiescence changes how stem cells interpret their environment. We are investigating how the body uses this mechanism to regulate and coordinate stem cell function, in tissue growth and repair, across large anatomical distances.

The process of aging is intimately linked with growth. There are many stereotypic changes that develop in an organism through the course of aging; the skin thins, wrinkles and doesn’t heal as well, muscle loses mass, strength, and flexibility, etc. Like in growth, many of the changes observed in aging are dependent upon the coordinated behavior of stem cells that build and maintain tissue. But, in aging, the coordination between stem cells is impaired and the tissue produced is dysfunctional. We are studying how stem cells change in aging and how changes in stem cell function contribute to the pathology of aging.

Projects in the lab revolve around using stem cell behavior as tool to discover the biologic signals that regulate that behavior and the molecular pathways involved. The laboratory primarily uses skeletal muscle stem cells as a model system due to the extremely powerful and specific genetic tools available in this system. We also work with mesenchymal, epidermal, hair follicle, and hematopoietic stem cell systems. We utilize a broad spectrum of tools to interrogate how stem cells respond to environmental cues to regulate tissue function: stem cell-specific genetic mouse models, parabiosis, single cell analyses, live cell imaging, and physiologic stresses. We perform our studies in mouse models of human (patho) physiologic tissue growth, injury-repair, aging, and disease to understand these conditions and develop therapies to restore healthy function.